Original Article Immunohistochemical Expression of BCL-2 in Adenoid Cystic Carcinoma of Salivary Gland Tumors

BCL-2 protein in Adenoid cystic carcinoma

Faiz Rasul¹, Zainab Rizvi¹, Sultan Muhammad Wahid¹, Muhammad Talha Haseeb², Rozina Jaffar³ and Ayesha Amjad¹

ABSTRACT

Objective: To determine expression of BCL-2 protein in Adenoid cystic carcinoma of salivary glands. **Study Design:** Descriptive study.

Place and Duration of Study: This study was conducted at the Departments of Surgery, Lahore General Hospital, Mayo Hospital, and de'Montmorency college of Dentistry, Lahore from February 2017 to August 2017.

Materials and Methods: Thirty five cases of Adenoid cystic carcinoma (ADCC), of salivary glands were selected. Slides were prepared by routine hematoxylin and eosin (H & E) staining, as well as by Immunohistochemistry (IHC) for BCL-2. Grading of ADCC was done as low, intermediate and high grades on H&E sections. Scoring of BCL-2 expression was determined on BCL-2 immunohistochemical stained slides. Data was entered into SPSS version 21 and descriptive statistics were determined.

Results: In this study most common age group affected was 41-60 years age (40%), cases of ADCC were more common in female as compared to male (54%) Expression of BCL-2 was strongly positive in all cases of ADCC. In major salivary gland parotid glands was the most common site while in minor salivary glands most common site was palate. Majority cases reported as excisional biopsy (54.3%) with size 2-5cm (68.8%). Histopathologically 19 cases (54%) were categorized as high grade tumor. All cases showed expression of BCL-2 irrespective of the grade of the tumor.

Conclusion: BCL-2 protein is expressed in Adenoid cystic carcinoma. Its expression is helpful in grading small biopsies, predicting behavior, and planning target therapy of Adenoid cystic carcinoma

Key Words: BCL-2, salivary gland tumors, immunohistochemistry, Adenoid cystic carcinoma. Immunohisto=-chemistry,

Citation of articles: Rasul F, Rizvi Z, Wahid SM, Haseeb MT, Jaffar R, Amjad A. Immunohistochemical Expression of BCL-2 in Adenoid Cystic Carcinoma of Salivary Gland Tumors. Med Forum 2018;29(12):14-19.

INTRODUCTION

The World Health Organization describes ADCC as a basaloid tumor containing both epithelial and myoepithelial cells¹. It is the second most common malignant salivary gland tumor², and approximately 1% of all head and neck region malignancies³. It accounts for 10% of all salivary gland neoplasms⁴. Its frequency is much lower in major salivary glands as compared to minorsalivary glands ⁵. In the oral cavity, palate is the most common site (39.9%) and tongue is the second most common (19.8%).

Correspondence: Faiz Rasul, Demonstrator, Oral Pathology, de'Montmorency College of Dentistry Lahore. Contact No: 0343-8430485 Email: bayfaiz871@gmail.com

Received by:	August, 2018
Accepted by:	October, 2018
Printed by:	December 2018

Among the major salivary glands, submandibular gland is the most common site followed by parotid gland, 15-30% and 2-15 % respectively⁶. Slow growth rate, perineural invasion and delayed onset of distant metastasis are the typical features of ADCC. It is ultimately fatal due to distant metastasis and late recurrence¹.

Accurate diagnosis depends upon the histological evaluation by precise method for malignant salivary gland tumors ⁷. The histopathological diagnosis of these tumors is usually made through the assessment of histological architecture, cellular structure and differentiation, component of tumor stroma, growth pattern of the tumor borders, and along with the clinical information⁸. There are three growth patterns: the cribriform or glandular type, the tubular type and the solid type. ⁹ Tumor is Graded as Low Grade (Tubular pattern), Intermediate Grade (cribriform pattern with < 30% solid component), and High Grade (>30% solid component). ¹⁰Perineural invasionsis also observed in this pattern which is a characteristic feature of ADCC¹¹.

^{1.} Department of Oral Pathology, de'Montmorency College of Dentistry Lahore.

³ Sheikh, Zaid Hospital, Lahore.

^{3.} Department of Pathology, Rahbar Medical & Dental College, Lahore.

MATERIALS AND METHODS

This is a descriptive study in which thirty five cases of ADCC of salivary glands were selected from Departments of Surgery, Lahore General Hospital, Mayo Hospital, and de'Montmorency college of Dentistry, Lahore from February 2017 to August 2017. Slides were prepared by routine hematoxylin and eosin (H&E) staining, as well as by Immunohistochemistry (IHC) for BCL-2. Grading of ADCC was done as low, intermediate and high grade. Scoring of BCL-2 expression determined was on BCL-2 immunohistochemical stained slides. BCL-2 immunoreactivity was divided into four groups as follows: Score Zero (0): Negative [When neoplastic cells stained less than 5%], score one (1): + weak positive (WP) [When neoplastic cells stained 5-19%], score two (2): ++ moderate positive [When neoplastic cells stained 20-50%] score three (3): +++ strong positive (SP) [When neoplastic cells stained more than 50%].Observations were made on the basis of intensity of cytoplasmic staining. The intensity was graded in all

the cases with 0, 1, 2 and 3 to represent negative, weak positive, moderate positive and strong positive staining respectively. Care was taken to decrease the subjectivity by ensuring a) two observations per field area of slide and b) by intra-lesional comparison with a positive control³¹.Data was entered into SPSS version 21 and descriptive statistics were determined.

RESULTS

In this study most common age group affected was 41-60 years age (40%), cases of ADCC were more common in female as compared to male (54%) Expression of BCL-2 was strongly positive in all cases of ADCC. In major salivary gland parotid glands was the most common site while in minor salivary glands most common site was palate. Majority cases reported as excisional biopsy (54.3%) with size 2-5cm (68.8%). Histopathologically 19 cases (54%) were categorized as high grade tumor. All cases showed expression of BCL-2 irrespective of the grade of the tumor.

Table No.1: Different Immunostains and their expression in Adenoid Cystic Carcinoma reported in different studies

Expression of different Immunostains in ADCC						
Author name	Marker	Tumor	Remarks			
Zhang et al., 2018 ¹²	Cathepsin D	ADCCs	74.1% expressed			
Kintawati et el, 2017 ¹³	Ki67	ADCCs	As grade is increasing expression of Ki-67 is			
			also increasing.			
Iyogun et el., 2017 ¹⁴	Ki67, SMA	ADCCs	Both markers expressed strong positive			
			expression (75% cases)			
Fujii et el.,2017 ¹⁵	Ki67,MYB, MYC	ADCCs	High Ki-67 index: 24.2% cases			
			MYB expression: 51.5%			
			MYC expression: 63.3%			
Bu et el.,2015 ¹⁶	Ki67,Cyclin D1, CD147,	ADCCs	strong expression of ki67in all growth			
	Slug,Survivin		patterns			
Al-Azzawi, 2013 ¹⁷	Ki67, p53	ADCCs	Ki67 40 %; p53 aberration 73.3%.			
Salehinejad et al., 2011 ¹⁸	HER2/Neu	ADCCs	46 % over expression of HER2/neu;			
_			significant in grades of ADCC.			
West et al., 2011 ¹⁹	Myb	ADCCs	Myb can use to differentiate ADCC from its			
			histology mimics.			
Edwards et al., 2003 ²⁰	C-KIT	ADCCs,	No role in differentiating between ADCC and			
		PLGAs	PLGA, MA			
Penner et al., 2002. ²¹	C-kit, Galectin-3	ADCCs	C-kit is 100 % in ADCC; Gelectin -3 in			
			ADCC is 88.8 %			
Tsai et. el,2018 ²²	BCL-2 (BLM-s)	ADCCs	BCL-2 (BLM-s) shows a strong positive			
			expression (nuclear staining) in ADCC			
Zhu et el. 2018 ²³	BCL-2	ADCCs	31 out of 60 cases (51.67%) were positive for			
			BCL-2			
Jiang, 2014 ²⁴	BCL-2	ADCCs	60% positive expression in ADCC			
Meer et al., 2011. ²⁵	BCL-2	ADCCs;	High expression in the solid and cribriform			
		PLGAs	patterns of ADCC			
Xie et al., 2010 ²⁶	BCL-2	ADCC	Prognostic role in ADCC.			
Al-Rawi et al., 2010 ²⁷	BCL-2	PA,MEC,	High expression was observed with greater			
		ADCC	size, higher grades and greater degree of			
			invasion.			
Carlinfante et al.,2005 ²⁸	BCL-2	ADCC	High expression of BCL-2 90%.			
Norberg-Spaak et al.,	BCL-2	ADCC	No significant association was seen between			
2000 ²⁹			BCL-2 and grades of ADCC			
Soini et al., 1998 ³⁰	BCL-2	Salivary glands	More expression of BCL-2 in Benign than			
		tumors (SGTs)	malignant (SGTs).			

 Table No.2: Clinicopathological Characteristic of Adenoid

 cystic Carcinoma in Number (Frequency) and Percentage

Clinicopathological	Number	%age
characteristics of ADDC	(f)	
Age	10	20.6
20-40	10	28.6
41-60	14	40.0
61-80	11	31.4
Total	35	100.0
Gender		
Male	16	45.7
Female	19	54.3
Total	35	100.0
Hospital		
Mayo hospital	15	42.9
Lahore General	9	25.7
de'Montmorency College of	11	31.4
Dentistry/ PDH,		
Total	35	100.0
Site		
Parotid Gland	13	37.1
Submandibular Gland	3	8.6
Sublingual Gland	2	5.7
Minor salivary gland on palate	10	28.6
Minor salivary gland on labial	2	5.7
mucosa		
Minor salivary gland on	5	14.3
Buccal mucosa		
Total	35	100.0
Laterality		
Right	10	28.6
Left	25	71.4
Total	35	100.0
Specimens		
Incisional	12	34.3
Excisional	19	54.3
Resection	4	11.4
Total	35	100.0
Size		
<1cm maximum diameter	1	2.9
1cm to 2 cm maximum	4	11.4
diameter		
2.1-5cm	24	68.6
> 5 cm in maximum diameter	6	17.1
Total	35	100.0
Mass		
Solid	35	100
Grade		
Low	4	11.4
Intermediate	12	34.3
High	19	54.3
Total	35	100.0
Expression of BCL-2	55	100.0
+++ strong positive [staining	35	100.0
in $>50\%$ of neoplastic cells]	55	100.0
Grades and +++ strong		
nositiveBCL-2 evoression		
Low grade	4	11 42
Intermediate grade	12	34.28
High grade	10	54.28
Total	25	100
10101		100

Table	No.3:	Comparison	of BCL-2	Expression	in	ADCC
with D	oifferei	nt Studies				

Sr Sr	Authors Na	mes & Vears	Current Study	
No	Autors i a	ines et l'ears	Current Study	
1	Jiang et al., 2014 ²⁴			
-	ADCC (n)	35	35	
	BCL-2	ADCC 60%	All cases of ADCC	
	expression	1200000	Showed	
	··· F ·····		expression100 %	
3	Maniunath	a et al., 2011 ³²		
e e	ADCC (n)	21	35	
	BCL-2	All cases	Strong positivity in	
	expression	expressed with	all pattern of	
	- I	varving	ADCC	
		intensity: Mild 7		
		(33.3%),		
		Moderate 6		
		(28.5%), SP		
		8(38%)		
4	Meer et al.,	2011 ²⁵		
	ADCC (n)	29	35	
	BCL-2	High positivity	Strong positivity in	
	expression	in solid and	all pattern of	
	1	cribriform	ADCC	
		pattern		
5	Xie et al., 2	D10 ²⁶		
	ADCC (n) 31 35		35	
	BCL-2 expression: in both studies all cases			
	expressed positivity of BCL-2			
6	Al-Rawi et al., 2010 ²⁷			
	ADCC (n)	22	35	
	BCL-2	90 %	100 %	
	expression			
7	Carlinfante	et al., 2005 ²⁸		
	ADCC (n)	21	35	
	BCL-2	ADCC	ADCC expressed	
	expression	expressed 90%	100 %	
8	Norberg-Sp	aak et al., 2000 ²⁹		
	ADCC (n)	31	35	
	BCL-2	Weak,	All cases were	
	expression	intermediate	strong positive	
		positive and		
		strong positive		
		cases were		
	a • • • •	tound		
9	Soini et al.,	1998.	a .	
	BCL-2	However all	Strong positivity in	
	expression	cases of ADCC	all pattern of	
		did not show	ADCC	
		strong positive		
		expression		

ADCC: Adenoid cystic carcinoma, MEC: mucoepidermoid carcinoma, PLGA: polymorphous Low grade adenocarcinoma, BSGT: Benign Salivary Gland tumors, MSGT: Malignant salivary Glands Tumors, SP: Strong positive, IP: Intermediate Positive, WP: Weak positive

DISCUSSION

A study was published in 2014 by Jiang et al. (2014)²⁴ aiming to determine the expression of BCL-2 in ADCC. Expression of BCL-2 was 60% in ADCC in a total sample of 35 cases. In the current study all cases of ADCC expressed positivity of BCL-2 as strong positive

while in Jiang's²⁴ study it was only 60 %. Manjunatha et al., $(2011)^{32}$ determined expression of BCL-2 in both benign and malignant SGTs as 57% and 78% respectively. In their study as well as in the current study all cases of ADCC were consistently positive for BCL-2. Carlinfante et al., $(2005)^{28}$ reported a high expression of BCL-2 (90%) in ADCC. Current study showed similar but somewhat higher expression of BCL-2.

Figure No.1: H & E staining of intermediate grade Adenoid cystic carcinoma showing the cribriform pattern (X100)

Figure No.2: H & E staining of intermediate grade ADCC showing the cribriform pattern(X400).

Figure No.3: BCL-2 immunostaining of Intermediate grade ADCCshowing strong positive expression (X100).

Figure No.4: BCL-2 immunostaining of intermediate grade ADCC showing strong positive expression (X200)

Figure No.5: BCL-2 immunostaining of intermediate grade ADCC showing strong positive expression (X400)

Figure No.6: BCL-2 immunostaining, control in tonsil showing strong positive expression (X100)

All cases of ADCC expressed BCL-2 expression but there was no weak and moderate positive staining group in this study. All cases of ADCC showed strong positive expression of BCL-2 in present study which is in contrast to Soini's³⁰ study where all cases of ADCC did not express strong positive expression. In another study by Norberg-Spaak et al. $(2000)^{29}$, biological

17

behavior of ADCC was determined in its three subtypes, solid, cribriform, and tubular, by using BCL-2. However, BCL-2 expression did not show any correlation with grade of ADCC and results were statistically insignificant (p = 0.49). In our study, results are contrary to Norberg's study, where all types of ADCC were strongly positive for BCL-2 expression.

There were certain limitations of the current study which might have caused the difference in results, such as a limited sample size, owing to the rare nature of the tumor. Similarly, there was an unequal distribution of the numbers and grades of these tumors. The distribution of the tumors was also unequal in terms of the site of tumor. Further studies with larger sample size are recommended to find out the preciserole of BCL-2 in ADCC.

CONCLUSION

Diagnosis of ADCCon routine staining (H&E) is difficult in some cases due to different histopathological variants which mimics with variants of other malignant salivary gland tumors such as Polymorphous Low Grade Adenocarcinoma. The BCL-2 protein has shown a strong positive expression in ADCC, regardless of grade. Its definitive role needs to determine on large sample size. Positive expression of BCL-2 in this tumor can help in predicting the behavior of this tumor. BCL-2 has definitive role in the carcinogenesis of ADCC of salivary gland tumor. In addition, molecular target therapy against BCL-2 can be planned in future for its better management.

Author's Contribution:

Concept & Design of Study:	Faiz Rasul			
Drafting:	Zainab	Rizvi,	Sultan	
	Muhammad Wahid			
Data Analysis:	Muhammad Talha			
	Haseeb,	Rozina Ja	affar	
Revisiting Critically:	Faiz Rasul, Ayesha			
	Amjad, Z	Zainab Ri	zvi	
Final Approval of version:	Faiz Ras	sul		

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

- Dalirsani Z, Mohtasham N, Pakfetrat A, Delavarian Z, Ghazi A, Rahimi S, et al. Adenoid Cystic Carcinoma of the Buccal Mucosa with Rare Delayed Frontal Bone Metastasis: A Case Report Dent Mater Tech 2016;5(3):208-12.
- Schwarz S, Müller M, Ettl T, Stockmann P, Zenk J, Agaimy A. Morphological heterogeneity of oral salivary gland carcinomas: a clinic pathologic study of 41 cases with long term follow-up emphasizing the overlapping spectrum of adenoid cystic carcinoma and polymorphous low-grade

adenocarcinoma. Int J Clin Exp Pathol 2011; 4(4):336.

- Wiseman SM, Popat SR, Rigual NR, Hicks WL, Orner JB, Wein RO, et al. Adenoid cystic carcinoma of the paranasal sinuses or nasal cavity: a 40--year review of 35 cases. ENT: Ear, Nose & Throat J 2002;81(8).
- 4. Dillon PM, Chakraborty S, Moskaluk CA, Joshi PJ, Thomas CY. Adenoid cystic carcinoma: a review of recent advances, molecular targets, and clinical trials. Head & Neck 2016;38(4):620-7.
- 5. Yaga US, Gollamudi N, Mengji AK, Besta R, Panta P, Prakash B, et al. Adenoid cystic carcinoma of the palate: case report and review of literature. Pan Afri Med J 2016;24(1).
- 6. Bradley PJ. Adenoid cystic carcinoma of the head and neck: a review. Current opinion in otolaryngology & head and Neck Surg 2004;12(2): 127-32.
- 7. Ashraf MJ, Azarpira N, Khademi B, Shaghasemi S, Bagheri N. The value of immunohistochemical markers in pleomorphic adenoma and adenoid cystic carcinoma of the salivary gland. Iranian Red Crescent Med J 2009;11(4):414.
- 8. Nagao T, Sato E, Inoue R, Oshiro H, Takahashi RH, Nagai T, et al. Immunohistochemical analysis of salivary gland tumors: application for surgical pathology practice. Actahistochemi caetcyto chemica 2012;45(5):269-82.
- Stenner M, Klussmann JP. Current update on established and novel biomarkers in salivary gland carcinoma pathology and the molecular pathways involved. Eur Arch Oto-Rhino-Laryngol 2009; 266(3):333-41.
- 10. Jaso J, Malhotra R. Adenoid cystic carcinoma. Archives of Pathol Lab Med 2011;135(4):511-5.
- 11. Almeida LO, Guimarães DM, Martins MD, Martins MA, Warner KA, Nör JE, et al. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence. Stem cell Res 2017;21:94-105.
- 12. Zhang M, Wu JS, Yang X, Pang X, Li L, Wang SS, et al. Over expression Cathepsin D contributes to perineural invasion of salivary adenoid cystic carcinoma. Frontiers Oncol 2018;8:492.
- Kintawati S, Darjan M, Yohana W. Analysis of Ki-67 expression as clinicopathological parameters in predicting the prognosis of adenoid cystic carcinoma. Dent J (MajalahKedokteran Gigi) 2017; 50(4):205-10.
- 14. Iyogun CA, Omitola OG. Imunohistochemical differentiation of Adenoidcystic Carcinoma from polymorphous Low-Grade Adenocarcinoma using Ki67 and Alpha-SMA 2017;4:2.
- 15. Fujii K, Murase T, Beppu S, Saida K, Takino H, Masaki A, Ijichi K, et al. MYB, MYBL 1, MYBL

2 and NFIB gene alterations and MYC over expression in salivary gland adenoid cystic carcinoma. Histopathol 2017;71(5):823-34.

- 16. Bu LL, Deng WW, Huang CF, Liu B, Zhang WF, Sun ZJ. Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma. Am J Cancer Res 2015;5(5):1751.
- 17. Al-Azzawi LM. Expression of Ki67 and p53 as proliferation and apoptosis markers in adenoid cystic carcinoma. J Baghdad Coll Dent 2013;25(2): 76-9.
- Jafarian AH, Salehinejad J, Joushan B, Omidi AA. Immunohistochemical Study of HER2/neu Over expression in Adenoid Cystic Carcinoma of Salivary Glands. Iranian J Pathol 2011;6(2):86-92.
- West RB, Kong C, Clarke N, Gilks T, Lipsick J, Cao H, et al. MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumors with clinic-pathologic correlation. Am J Surgical Pathol 2011;35(1):92.
- Edwards PC, Bhuiya T, Kelsch RD. C-kit expression in the salivary gland neoplasms adenoid cystic carcinoma, polymorphous low-grade adenocarcinoma, and monomorphic adenoma. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiol Endodontol 2003;95(5):586-93.
- 21. Penner CR, Folpe AL, Budnick SD. C-kit expression distinguishes salivary gland adenoid cystic carcinoma from polymorphous low-grade adenocarcinoma. Modern Pathol 2002;15(7):687.
- 22. Tsai MS, Hsieh MS, Huang HY, Huang PH. Nuclear immunoreactivity of BLM-s, a proapoptotic BCL-2 family member, is specifically detected in salivary adenoid cystic carcinoma. Human Pathol 2018 Sep 24.
- 23. Zhu X, Yu Y, Hou X, Xu J, Tan Z, Nie X, Ling Z, Ge M. Expression of PIM-1 in salivary gland adenoid cystic carcinoma: Association with tumor progression and patients' prognosis. Oncol Letters 2018;15(1):1149-56.
- 24. Jiang LC, Huang SY, Zhang DS, Zhang SH, Li WG, Zheng PH, et al. Expression of beclin 1 in

primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis. Brazilian J Med Biological Res 2014;47(3):252-8.

- 25. Meer S, Singh S, Altini M. C-kit and bcl-2 are not useful markers in differentiating adenoid cystic carcinoma from polymorphous low-grade adenocarcinoma. ISRN Pathol 2011.
- 26. Xie X, Nordgård S, Clausen OP, Boysen M. Prognostic significance of Bax and Bcl-2 expressions in adenoid cystic carcinoma of major and minor salivary glands of nasal and oral epithelium. Open Otorhinolaryngol J 2010;4:20-6.
- 27. Al-Rawi, N. H., Omer, H. and Al Kawas, S. Immunohistochemical analysis of P53 and bcl-2 in benign and malignant salivary glands tumors. J Oral Pathol. Med 2010 39: 48-55.
- Carlinfante G, Lazzaretti M, Ferrari S, Bianchi B, Crafa P. P53, bcl-2 and Ki-67 expression in adenoid cystic carcinoma of the palate. A clinicopathologic study of 21 cases with long-term follow-up. Pathol Res Pract 2005;200(11-12): 791-9.
- 29. NorbergSpaak L, Dardick I, Ledin T. Adenoid cystic carcinoma: Use of cell proliferation, BCL2 expression, histologic grade, and clinical stage as predictors of clinical outcome. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck 2000;22(5):489-97.
- Soini Y, Törmänen U, Pääkkö P. Apoptosis is inversely related to bcl-2 but not to bax expression in salivary gland tumours. Histopathol 1998;32(1): 28-34.
- 31. Mohammed HO, Ahmed JN, AL-Rawi NH. Immunohistochemical Expression of P53 and bcl-2 in benign and malignant salivary glands tumors. Mustansiria Dent J 2007;4(1):13-21.
- 32. Manjunatha BS, Kumar GS, Raghunath V. Immunohistochemical expression of Bcl-2 in benign and malignant salivary gland tumors. Med Oral Patol Oral Cir Bucal 2011;16(4):503-7.