Original Article

Quantification of Extended

Spectrum β-Lactamase Producing

Spectrum β-Lactamase Producing Isolates among Gram Negative Bacteria

Isolates among Gram Negative Bacteria in Hospitalized Patients with Blood Stream Infections

Muhammad Usman Anjum¹, Anjum Saeed¹, Surriya Yasmin² and Nazia Shams¹

ABSTRACT

Objective: To quantify ESBL producing microorganisms among hospitalized patients with blood stream infections, **Study Design:** Descriptive study

Place and Duration of Study: This study was conducted at the Department of Pathology, Frontier Medical College, Abbottabad from Jan 2016 to Dec 2016.

Materials and Methods: Bacterial isolates were recognized based on colony morphology and biochemical characteristics. Modified Kirby-Bauer method using Mueller Hinton agar was used to check for antibiotic sensitivity. ESBL producers were identified using double disc synergy test.

Results: Overall 152 samples yielded a growth of gram negative bacteria. Out of these 152 positive samples, 80% comprised of E. coli while 12% were K. pneumoniae, 05% were P. aeruginosa and 03% were P. mirabilus. The prevalence of ESBL producing bacteria was low, 1.97%. Most of them were observed in male patients as compared to female patients. Likewise, their incidence was similar among different age groups but there was no ESBL producing organism observed in patients who were less than 20 years of age. As per the site of involvement, ESBL producing bacteria were most commonly seen in specimens received from ICU followed by medical ward.

Conclusion: Infections caused by ESBL producing microorganisms are not uncommon in clinical practice. Detection of such bacteria is pivotal in both community and hospital acquired infections as rapid identification and characterization of such resistant bacteria will aid in minimizing the spread of these infections as well as in selecting appropriate antimicrobial therapy.

Key Words: ESBL, gram negative

Citation of articles: Anjum MU, Saeed A, Yasmin S, Shams N. Quantification of Extended Spectrum β-Lactamase Producing Isolates among Gram Negative Bacteria in Hospitalized Patients with Blood Stream Infections. Med Forum 2018;29(8):7-10.

INTRODUCTION

 β -lactam antibiotics are frequently used in the management of infectious diseases and therefore, emerging and increasing resistance to these drugs is common. Persistent exposure to β -lactam antibiotics has led to mutations and continued production of β -lactamases which has resulted in bacterial resistance to even newer groups of β -lactam antibiotics.^{1,2} These enzymes have been labeled as extended spectrum β -lactamase (ESBL).

Infections with these ESBL producing microorganisms pose a new and significant risk in hospitalized patients globally.

^{1.} Department of Pathology / Gynecology², Frontier Medical & Dental College, Abbottabad.

Correspondence: Dr. Muhammad Usman Anjum, Associate Professor of Pathology, Frontier Medical & Dental College, Abbottabad. Contact No: 0335-5112339 Email: usmanziyai@gmail.com

Received: March, 2018;

Accepted: May, 2018

They lead to both hospital and community acquired infections and are associated with higher mortality.³⁻⁵ The geographical distribution of such clinical isolates varies greatly depending on geography and institution. The prevalence of ESBL producing Enterobacteriaceae varies between 0 - 25% among different institutes in United States but the national average is 3%.⁶ Similarly, ceftazidime resistance in K. pneumoniae isolates varies from 5% in non-intensive care unit to 10% in intensive care unit (ICU).⁶ In Japan, there is a very low incidence of ESBL producing isolates among K. pneumoniae and E. coli where only 0.3% of K. pneumoniae and < 0.1% of E. coli isolates were ESBL positive.⁷

It is remarkable that certain specific ESBLs are solely present in certain geographical areas or regions. For example, infection with TEM-10 is quite new in Europe while it is responsible for many disparate outbreaks in United States for many years.⁸⁻¹¹ On the other hand, TEM-3 is found frequently in France but it is undetected in United States.¹² TEM refers to Temoniera who was a patient from Greece from whom this strain was first isolated.¹³

Indiscriminate and injudicious use of antibiotics especially broad spectrum cephalosporins is a major

Med. Forum, Vol. 29, No. 8

cause of emergence of ESBL producing microorganisms.¹⁴ Duration of inpatient and specifically ICU stay, catheterization, mechanical ventilation and intubation, severity of disease and prior antibiotic use are few of the risk factors which are associated with the emergence of ESBLs.⁶

MATERIALS AND METHODS

This descriptive study was performed Department of Pathology, Frontier Medical & Dental College, Abbottabad from Jan 2016 to Dec 2016. Samples, received in the Pathology department for culture and sensitivity from hospitalized patients, were included. Bacterial isolates were recognized based on colony morphology and biochemical characteristics. Modified Kirby-Bauer method using Mueller Hinton agar was used to check for antibiotic sensitivity of the gram negative bacteria using a set of antibiotics comprising of imipenem, aztreonam, levofloxacin, amoxicillin with clavulanic acid, ceftazidime and cefoperazone with sulbactam. ESBL producers were identified using double disc synergy test as described by Jarlier et al.¹⁵ Test organisms were swabbed on the surface of Mueller Hinton agar plate. A disc of amoxicillin and clavulanic acid (20µg and 10µg) was positioned in the center while cephalosporin (ceftriaxone, cefotaxime, and that of ceftazidime, 30µg each) and aztreonam (30µg) discs were placed around the central disc at a distance of 30mm. Extension of zone of inhibition around cephalosporin/aztreonam discs towards central disc were labeled as ESBL producers. E. coli ATCC 25922 was used as a negative while a recognized ESBL producer were used as positive control.⁵

RESULTS

Overall 152 samples yielded a growth of gram negative bacteria. Out of these 152 positive samples, 80% comprised of E. coli while 12% were K. pneumoniae, 05% were P. aeruginosa and 03% were P. mirabilus. The prevalence of ESBL producing bacteria was low, 1.97%. Most of them were observed in male patients as compared to female patients, Table 1.

TableNo.1.DistributionofESBLproducingbacteria as per gender

Gender	Characteristics	Number	%age
Male	Total Isolates	97	63.82%
	ESBL Producing	02	1.31%
	Isolates		
Female	Total Isolates	55	36.18%
	ESBL Producing	01	0.66%
	Isolates		

Likewise, their incidence was similar among different age groups but there was no ESBL producing organism observed in patients who were less than 20 years of age, Table 2. As per the site of involvement, ESBL producing bacteria were most commonly seen in specimens received from ICU followed by medical ward, Table 3.

Table	No.2:	Incidence	of	ESBL	producing	bacteria
among	g diffei	rent age gr	ou	ps		

Age,	Total Isolates	ESBL
(in years)		Producing Isolates
0 - 20	39, 25.66%	00, 00%
21 - 40	59, 38.82%	01, 0.65%
41 - 60	34, 22.37%	01, 0.66%
> 61	20, 13.15%	01, 0.66%
Total	152, 100%	03, 1.97%

Table	No.3:	Stratification	of	ESBL	producing
bacteria according to the site of isolation					

Hospital Site	Total	ESBL Producing
	Isolates	Isolates
ICU	68, 44.74%	02, 1.31%
Medical Ward	50, 32.89%	01, 0.66%
Surgical Ward	29, 19.08%	00,00%
Gynecology	05, 3.29%	00,00%
Ward		
Total	152, 100%	03, 1.97%

Both E. coli and K. pneumoniae were sensitive to imipenem and levofloxacin while E. coli showed moderate resistance to amoxicillin plus clavulanic acid and ceftazidime, Figure 1. P. aerugenosa was sensitive to most of the antibiotics. P. mirabilus was sensitive to levofloxacin and cefoperazone plus sulbactam while it showed moderate resistance to imipenem, aztreonam and amoxicillin plus clavulanic acid.

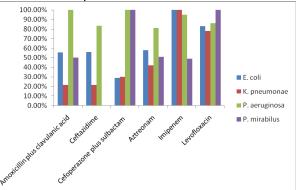


Figure No.1: Antibiotic sensitivity of gram negative bacteria

DISCUSSION

Resistance of infectious organisms to conventional antimicrobial drugs has become a global issue with serious consequences on the outcome of infectious diseases. Misuse or overuse of antibiotics has played a major role in acquiring this resistance to antibiotics.² There is a very high risk of treatment failure in patients who have acquired infections, which were caused by ESBL positive organisms, when given extended

spectrum β -lactam antibiotics. Thus, all microorganisms which were established for ESBL production should be reported as resistant to all extended spectrum β -lactam antibiotics irrespective of their antibiotic susceptibility test outcomes.¹⁶

The prevalence of ESBL producing bacteria was low (1.97%) in our study. Similarly, Gray et al have also reported a very low (0.7%) rate of ESBL positive bacteria in their study which was conducted in Malawi.¹⁷ Likewise, only 3.8% of blood isolates in patients from Dakar, Senegal, were ESBL producing microorganisms.¹⁸ Correspondingly, the rate of ESBL was 6% in Saudi Arabia according to Khanfar et al whereas 15.4% of these were detected among hospitalized patients while 4.5% were detected in outpatients.¹⁹ But, on the other hand, the prevalence of ESBL positive bacteria was found to be 10-25% in Southern Europe while it was reported to be 25.8% amongst E. coli and K. pneumoniae isolates in Eastern Europe.^{20, 21} The variable rate of ESBL producing microorganisms, being lower in low income counties and higher in higher income countries, could be due to the fact that poor quality or higher cost of antibiotic drugs in developing countries while their overuse in developed counties could lead to this discrepancy in results.21

The prevalence of E. coli was higher (80%) in our study. Khanfar et al also reported that majority (83%) of their isolates comprised of E. coli. ¹⁹ Likewise, most of the isolates were E. coli in a study conducted by Al-Zarouni et al in UAE.²²

Knowledge of regional resistance patterns of pathogens, timely initiation of appropriate empirical antimicrobial therapy and strict enforcement of infection control measures could help not only to contain this emerging problem of antimicrobial resistance among microorganisms but also provide a cost effective way of reducing economic burden related to such infections, through prevention, on already over-burdened health system especially in developing countries.

CONCLUSION

Infections caused by ESBL producing microorganisms are not uncommon in clinical practice. Detection of such bacteria is pivotal in both community and hospital acquired infections as rapid identification and characterization of such resistant bacteria will aid in minimizing the spread of these infections as well as in selecting appropriate antimicrobial therapy.

Author's Contribution:

Concept & Design of Study:	Muhammad Usman
	Anjum
Drafting:	Anjum Saeed
Data Analysis:	Surriya Yasmin, Nazia
	Shams
Revisiting Critically:	Muhammad Usman

Final Approval of version: Anjum, Anjum Saeed Muhammad Usman Anjum

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

- 1. Pitout JD, Laupland KB. Extended-spectrum betalactamase-producing Enterobacteriaceae: an emerging public-health concern. The Lancet Infect Dis 2008;8(3):159-66.
- Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biological Sci 2015;22(1): 90-101.
- 3. Fennell J, Vellinga A, Hanahoe B, Morris D, Boyle F, Higgins F, et al. Increasing prevalence of ESBL production among Irish clinical Enterobacteriaceae from 2004 to 2008: an observational study. BMC Infect Dis 2012;12:116.
- 4. Kim B, Kim J, Seo MR, Wie SH, Cho YK, Lim SK, et al. Clinical characteristics of communityacquired acute pyelonephritis caused by ESBLproducing pathogens in South Korea. Infection 2013;41(3):603-12.
- Sood S, Gupta R. Antibiotic Resistance Pattern of Community Acquired Uropathogens at a Tertiary Care Hospital in Jaipur, Rajasthan. Ind J Comm Med: Official Publication of Ind Assoc Prevent Soc Med 2012;37(1):39-44.
- Bradford PA. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiol Reviews 2001;14(4):933-51.
- Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y. A preliminary survey of extendedspectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol letters 2000;184(1):53-6.
- Barroso H, Freitas-Vieira A, Lito LM, Cristino JM, Salgado MJ, Neto HF, et al. Survey of Klebsiella pneumoniae producing extended-spectrum betalactamases at a Portuguese hospital: TEM-10 as the endemic enzyme. J Antimicrobial Chemotherap 2000;45(5):611-6.
- Bradford PA, Cherubin CE, Idemyor V, Rasmussen BA, Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrobial agents and chemotherapy 1994;38(4):761-6.
- 10. Liu PY, Gur D, Hall LM, Livermore DM. Survey of the prevalence of beta-lactamases amongst 1000

gram-negative bacilli isolated consecutively at the Royal London Hospital. J Antimicrobial Chemotherap 1992;30(4):429-47.

- Naumovski L, Quinn JP, Miyashiro D, Patel M, Bush K, Singer SB, et al. Outbreak of ceftazidime resistance due to a novel extended-spectrum betalactamase in isolates from cancer patients. Antimicrobial agents and Chemotherap 1992;36(9):1991-6.
- Nordmann P. Trends in β-lactam resistance among Enterobacteriaceae. Clin Infect Dis 1998;27 (Supplement_1):S100-S6.
- 13. Rawat D, Nair D. Extended-spectrum betalactamases in Gram Negative Bacteria. J Global Infect Dis 2010;2(3):263-74.
- 14. Rice LB. Successful interventions for gram-negative resistance to extended-spectrum β -lactam antibiotics. Pharmacotherapy: J Human Pharmacol Drug Therap 1999;19(8P2):120S-8S.
- 15. Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer betalactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Reviews of Infect Dis 1988;10(4):867-78.
- 16. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7–A5 and informational supplement M100–S10. National Committee for Clinical Laboratory Standards, Wayne, PA; 2000.
- 17. Gray KJ, Wilson LK, Phiri A, Corkill JE, French N, Hart CA. Identification and characterization of

ceftriaxone resistance and extended-spectrum β lactamases in Malawian bacteraemic Enterobacteriaceae. J Antimicrobial Chemotherap 2006;57(4):661-5.

- Sire JM, Nabeth P, Perrier-Gros-Claude JD, Bahsoun I, Siby T, Macondo EA, et al. Antimicrobial resistance in outpatient Escherichia coli urinary isolates in Dakar, Senegal. J Infect Develop Countries 2007;1(3):263-8.
- 19. Khanfar HS, Bindayna KM, Senok AC, Botta GA. Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. J Infect Develop Countries 2009;3(4):295-9.
- Balode A, Punda-Polic V, Dowzicky MJ. Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from countries in Eastern Europe: results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2004-2010. Int J Antimicrobial Agents 2013;41(6): 527-35.
- Tansarli GS, Poulikakos P, Kapaskelis A, Falagas ME. Proportion of extended-spectrum β-lactamase (ESBL)-producing isolates among Enterobacteriaceae in Africa: evaluation of the evidence systematic review. J Antimicrobial Chemotherap 2014;69(5):1177-84.
- 22. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum betalactamase-producing Enterobacteriaceae in the United Arab Emirates. Medical principles and practice: Int J Kuwait Univ, Health Sci Centre 2008;17(1):32-6.