Analyzing the Reduction of Symptoms in Dacryocystorhinostomy Patients With and Without Silicon Intubation A Study Using Randomized Controlled Trials

Nazullah¹, Nuzat¹, Samina Karim², Mohammad Israr² and Romaisa²

ABSTRACT

Objective: To assess the efficacy of silicon intubation vs dacryocystorhinostomy in treating nasolacrimal duct blockage

Study Design: A Randomized Controlled Trial Study

Place and Duration of Study: This study was conducted at the Department of Clinical Ophthalmology, Khyber Girls's medical College, Hayatabad Medical Complex (HMC), Peshawar from 09th October 2022 to 9th April 2023.

Methods: 446 individuals with nasolacrimal duct obstruction (NLDO) were included in the research. Every patient was divided into two groups. Dacryocystorhinostomy (DCR) with silicon intubation was performed on Group A, whereas DCR without intubation was performed on Group B.

Results: The sample as a whole was 35.1 ± 9.2 years old on average. Group A’s mean age was 34.9 ± 9.3 years, whereas Group B’s mean age was 35.2 ± 9.1 years (p 0.730). Males made up 61.9% of group A and 56.5% of group B, respectively (p 0.248). In group A, the mean duration of symptoms was 11 ± 3.2 days, whereas in group B, it was 10.4 ± 2.9 days (p 0.082). Upon follow-up, group A’s effectiveness (measured by the total remission of symptoms) was 79.4%, whereas group B’s was 69.5% (p 0.017).

Conclusion: When compared to DCR without intubation, silicon intubation greatly increases the effectiveness of DCR in individuals with NLDO.

Key Words: Nasolacrimal duct obstruction, dacryocystorhinostomy, intubation, silicon, and efficacy.

INTRODUCTION

Total resistance to lacrimal irrigation with 100% regurgitation from the same or opposite punctum or a lacrimal sac mucocele without later reasons was characterized as primary acquired nasolacrimal duct obstruction (PANDO)⁷. There have been many surgical techniques published since Cadwell’s proposal of endonasal dacryocystorhinostomy (DCR) in 1893, including MMED and laser endoscopic DCR⁵. Regardless of surgical approach, common reasons for DCR failure include synechial adhesion with middle turbinate and/or nasal septum and expanding cicatrical closure for secondary healing with/without granuloma development⁵. There were several operational aides for endonasal endoscopic mechanical DCR. Examples of medical interventions included canalicular stenting, intraoperative or postoperative mitomycin C, and absorbable or non-absorbable materials packed with or without medication, such as topical steroids. Ophthalmologists began to favor DCR with silicone intubation in the 1970s. They recommended it because ostium7’s opening preservation improved surgical patency. Previous investigations have connected silicone stent failure to granulomatous inflammation. Recent research discusses DCR surgery with 4 silicone intubation⁶. The most popular technique for preventing rhinostomy closure is the use of silicone stents. By preserving fistula patency and postponing fibrous closure after healing, silicone intubation may enhance the results of endoscopic DCR⁶. Silicone stenting during endoscopic DCR is still up for discussion, however. According to some studies, the silicone stent may induce tissue granulation, which raises the possibility of adhesions, postoperative infections, punctal lacerations, and surgical failure⁶. There were conflicting findings from two meta-analyses on silicone intubation during endoscopic DCR⁵. Research has
contrastendoscopic DCR using silicone intubation
with not using it7-15. A previous research found DCR
with silicon intubation efficient in 93.3\% and failed in
6.7\%. In another study, 90.3\% of endoscopic endonasal
DCR treatments were effective8. Silicone intubation
increased success to 93.7\% from 86.7\% without it. The
present study compares DCR success rates in our
community’s NDO patients with and without silicon
intubation. We were prompted to perform this study
after experiencing patient attrition with NDO and DCR
failures, whether intubated or not9. The literature is
vast, however, several studies were undertaken with
small sample numbers and had inconsistent and
equivocal findings. If silicon intubation is equally or
more successful than not using it, we will discuss the
study’s results and urge local ophthalmologists to
further research and regular use of it during DCR for
NDO. This research will show local DCR success rates
with and without intubation for NDO10.

METHODS

Hospital ethics and scientific committee authorized
the study. The OPD department included all NDO patients
(per operational criteria) in the study. Every patient
supplied written informed permission after being
informed of the research’s goals and advantages. All
patients had medical histories and ophthalmologic
examinations. Block randomization divided patients
to two groups. DCR patients in Group A received
canalicular silicone stenting or intubation. Because
Group B patients had DCR without silicon intubation,
the silicone stent was inserted by both puncta and
knotted in the nasal cavity to relieve canthal strain. One
skilled CPSP fellow ophthalmologist performed all
surgeries. After four weeks, all patients were evaluated
for symptom relief and saline injection-confirmed duct
patency. 58 Premade proformas documented all the
aforementioned. Research bias and confounders were
eliminated using a stringent exclusion procedure. The
following are inclusion criteria: All 18-50-year-olds
with main acquired nasolacrimal duct blockage, either
gender. Congenital dacryocystitis and presacral
occlusion such as canalicular blockage and punctual
stenosis are excluded. • Atrophic rhinitis, chronic
granulomatous disorders, and nasal tumors may affect
surgery outcomes. • Previous lacrimal surgery failures.
Epiphora after radiation/trauma. Confounders like this
may affect research outcomes.

RESULTS

The study comprised 446 NLDO patients. Split all
patients in two. Group A had silicon-intubated DCR,
but Group B did not. Each group had 223 patients. The
age distribution is in Table 1. The sample averaged 35.1
+ 9.2 years. Group A averaged 34.9 + 9.3 years,
whereas Group B averaged 35.2 + 9.1 years (p 0.730).
Gender distribution is in Table 2. Group A had more

men than B, but B had more women. The mean
symptom duration was 11 + 3.2 days in group A and
10.4 + 2.9 days in group B (p 0.082). See Table 3.
Table 4 shows follow-up efficacy (symptom
resolution). Group A had 79.4\% DCR symptom
remission following intubation, whereas group B had
69.5\% (p 0.017).

| Table No. 1: Comparison Of Age Between Both Groups (N=223 Each) |
Age	DCR with silicon intubation No %	DCR without silicon intubation No %		
20-30 years	76	34.1%	74	33.2%
30-40 years	88	39.1%	86	39.0%
40-50 years	59	26.1%	62	27.8%
Total	223		223	

| Table No. 2: Comparison Of Gender Between Both Groups (N=223 Each) |
Gender	DCR with silicon intubation No %	DCR without silicon intubation No %		
Male	138	61.9%	126	56.5%
Female	85	38.1%	97	43.5%
Total	223	100%	223	100%

| Table No. 3: Comparison Of Duration Of Nldo Between Both Groups (N=223 Each) |
Duration of NLDO	DCR with silicon intubation No %	DCR without silicon intubation No %		
5-10 days	77	34.5%	134	60.1%
10-15 days	146	65.5%	89	39.1%
Total	223	100%	223	100%

| Table No. 4: Comparison Of Efficacy Between Both Groups (N=223 Each) |
Efficacy	DCR with silicon intubation No %	DCR without silicon intubation No %		
Yes	177	79.4%	155	69.5%
NO	46	20.6%	68	30.5%
Total	223	100%	223	100%

DISCUSSION

Cryocystorrhinostomy is the most frequent treatment for
persistent dacryostenosis or nasolacrimal duct
obstruction. Surgical DCR creates drainage between
the nasal cavity and lacrimal sac11. LA-DCR, EN-DCR,
and EX-DCR are the three DCR methods. In the 1970s,
ophthalmologists preferred silicone intubated DCR11.
They recommended its use and noticed that ostium
opening preservation increased postoperative patency.
Granulomatous inflammation increases silicone stent
failure risk, according to prior studies12. Recent work
discusses silicone intubation during DCR surgery from different views. This study examined DCR success with and without stents and compared it to previous studies. In a 2011 meta-analysis of DCR for nasolacrimal duct blockage with and without silicone tubes, DCR had equal success rates. The meta-analysis found no benefit to silicone stent intubation for major DCR. Since 2010, more prospective comparison studies have shown that silicone intubation in primary DCR increased the success rate of DCR without intubation by 68 percent, even if these benefits were not statistically significant. In a large randomized controlled trial, found that silicone intubation prevented the ostium from sealing, increasing DCR success. For effect size (population proportions 0.892 versus 0.943), sample size (111 and 105), and alpha (0.05, 2-tailed), the previous meta-analysis had four RCTs with a power of 0.274. How silicone intubation would work during DCR surgery remained unknown. In the EX-DCR subgroup, DCR with intubation had a considerably greater success rate after surgery than DCR without intubation, according to this cumulative meta-analysis. Statistically significant change [RR, 1.06; 95%CI (1.02–1.11), p = 0.006]. The finding varied considerably from the previous meta-analysis. The preceding meta-analysis's low statistical power and few trials may explain the discrepancies. If the research has a negative outcome, consider its power. If not, researchers risk type II errors and abandoning promising medicines. "Meta-analysis" combines the data of numerous "combinable," independent studies. Weak included studies enhance statistical power, decrease random error, and increase sample size. Intranasal tissue granulation, adhesion, infection, hemorrhage, punctural or canaliculare laceration, tube displacement or loss, and conjunctival irritation were common after surgery. These concerns were linked to silicone tubes. The silicone tube may induce tissue granulation, a topic of controversy. Silicone intubation, an inorganic foreign material, may cause granulation and rhinostomy closure. Longari et al. found that stents decreased ostial size more. Turbinoseptal synaesthesia, peristomal granuloma, and scar tissue produced most of this. The success rate for silicon stenting was 79.4% in 223 cases. Due to the endoscope, EnDCR has replaced the external DCR. Understanding the lateral nasal wall's anatomy and changes is crucial. The orbicularis oculi muscle's pumping action may explain EnDCR's strong functional results. Silicon tubing prevents stoma fibrous closure, keeping the fistula open after surgical recovery. After EnDCR, patients who retained silicon tubes outperformed those who extruded them. In a recent study, silicon stent recipients had a 79.4% success rate, whereas non-stent recipients had 69.5%. According to another study, the stent group had a greater Epiphora resolution rate, although it was not statistically significant. Kakkar et al. and Uulu et al. found that silicon tubes in children cause complications, but they found no significant differences between silicon stent DCR and standard DCR. Silicon stents greatly increase primary DCR failure, according to a retrospective study. They advised against silicon stent placement unless there is a particular cerebral obstruction. Due to granulation tissue formation, silicon stents in DCR prevent osteotomy and common canaliculare occlusion. The 91.3% effectiveness rate of this strategy matches Elmory et al. Study.

CONCLUSION

DCR with silicon intubation is significantly effective in patients with NLDO compared to DCR without intubation.

Recommendations: More randomized controlled studies with bigger sample sizes and multicenters are needed to establish the best local data to justify silicon intubation during DCR in NLDO patients.

Acknowledgment: We would like to thank the hospital administration and everyone who helped us complete this study.

Author’s Contribution:

Concept & Design of Study: Nazullah

Drafting: Nuzat, Samina Karim

Data Analysis: Mohammad Israr, Romaisa

Revisiting Critically: Nazullah, Nuzat

Final Approval of version: Nazullah

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.HMC-CARD-F-1 and approval No.0051 Dated 25.11.2021

REFERENCES

