Original Article

Complications of Pneumonectomy and It's Management

Pneumonectomy and It's Management Muhammad Imran¹, Nasir Ali⁴, Zeeshan Ehsan², Jamil ur Rehman¹, Jawad Hameed³ and Muhammad Sheharyar Ashraf³

ABSTRACT

Objective: To evaluate post-operative complications of pneumonectomy and their management. **Study Design:** Prospective study

Place and Duration of Study: This study was conducted at the thoracic surgery Lady Reading Hospital, Peshawar from January 2023 to December 2023.

Methods: Overall, 150 patients were included in this study. The study examined various factors including age, sex, preoperative conditions, pulmonary function, gas exchange tests, indications for operation, preoperative clinical stage, neoadjuvant treatment, type of analgesia, morbidity.

Results: Minor complications were observed in 83.3% patients. The most common minor complication in the patients was atrial dysrhythmia, noted in 53.6% patients. Major complications were observed in 56.7% patients. The most common major complication was pneumonia and noted in 51.8% patients. BMI was the effect modifier for the major complications, (p<0.050).

Conclusion: Pneumonectomy poses higher risks compared to other lung surgeries. Sleeve resections should be considered first. A multidisciplinary team must assess the necessity of pneumonectomy and be vigilant for potential complications. Preoperative evaluation and postoperative monitoring are important for early complication detection and treatment.

Key Words: Pneumonectomy, Post-operative complications, Management, Pneumonia, COPD

Citation of article: Imran M, Ali N, Ehsan Z, Jamil ur Rehman, Hameed J, Ashraf MS. Post-Operative Complications of Pneumonectomy and It's Management. Med Forum 2024;35(3):23-26.doi:10.60110/medforum.350305.

INTRODUCTION

Pneumonectomy, a surgical procedure involving the removal of an entire lung, carries risks of various complications including respiratory issues like pneumonia and atelectasis, cardiovascular problems such as arrhythmias or pulmonary embolism, potential infections in surgical wounds¹, bleeding complications, post-operative pain², and nutritional challenges due to difficulty in eating or swallowing³. On April 5, 1933, Evarts Graham achieved the first successful pneumonectomy, targeting T2 N1 squamous cell carcinomas; however, despite advancements in surgical methods and perioperative care, pneumonectomy continues to entail higher mortality and morbidity rates compared to lesser resections^{4,5}.

Correspondence: Dr. Jawad Hameed, Assistant Professor of Anesthesia, Lady Reading Hospital, Peshawar. Contact No: 0333 9202031 Email: drjawadhameed@gmail.com

Received:	January, 2024
Accepted:	February, 2024
Printed:	March, 2024

The management of post-operative complications following pneumonectomy typically involves a multidisciplinary approach, where the surgical team, intensivists⁶, respiratory therapists, and other specialists collaborate to address specific issues^{7,8}. This may include prescribing antibiotics to prevent or treat infections, employing respiratory therapy techniques such as chest physiotherapy and incentive spirometry to promote lung expansion and prevent complications like through atelectasis, managing pain analgesic medications or regional anesthesia techniques, fluids and electrolyte administering intravenous management to maintain hydration and prevent pulmonary edema⁹, closely monitoring vital signs and oxygen saturation for early detection and management of complications, and implementing rehabilitation interventions such as physical and respiratory therapy to aid in regaining strength, mobility, and respiratory function post-surgerv¹⁰.

The findings of this study can guide the surgeons in implementing preventive measures to reduce the risk of complications associated with pneumonectomy. Strategies such as pre-operative optimization of pulmonary function and perioperative physiotherapy may help mitigate postoperative complications.

METHODS

Study was conducted at department of thoracic surgery Lady Reading Hospital, Peshawar from January 2023 to

^{1.} Department of Thoracic Surgery / Cardiothoracic Surgery² / Anesthesia³, Lady Reading Hospital, Peshawar.

^{4.} Department of Cardiac Surgery, Rehman Medical Institute, Peshawar.

Med. Forum, Vol. 35, No. 3

December 2023. Study was started after ethical approval from hospital ethical board and written informed consent was taken from patients. In this study, patients diagnosed with small cell lung cancer or lowgrade malignant histological types such as carcinoid tumor, mucoepidermoid carcinoma, or unclassified carcinoma were excluded from the analysis. The study examined various factors including age, sex, preoperative conditions, pulmonary function, gas exchange tests, indications for operation, preoperative clinical stage, neoadjuvant treatment, type of analgesia, morbidity, and operative mortality.

The preoperative respiratory function was meticulously evaluated using blood gas analysis, spirometry, and a lung perfusion scan, alongside the assessment of predicted postoperative forced expiratory volume in 1 second (ppoFEV). Patients with risk factors for coronary artery disease (CAD) underwent further assessment via echocardiography, mvocardium scintigraphy, or coronary angiogram. Additionally, the American Society of Anesthesiology (ASA) score was utilized for risk classification. Clinical and pathological staging adhered to the TNM criteria of the international cancer. system staging lung Standard for pneumonectomy, defined as the intrapericardial or extrapericardial removal of the entire lung while performing radical dissection of the mediastinal lymph nodes without resecting the mediastinal chest wall or diaphragmatic structures, was the surgical approach employed.

The clinical and surgical variables associated with complications include patients aged over 70 years, those with a body mass index (BMI) exceeding 30, smokers, individuals with chronic obstructive pulmonary disease (COPD), those classified under higher ASA classes, individuals with coronary artery disease (CAD), patients with advanced carcinological staging (IIIA, IIIB), those who underwent neoadjuvant therapy, the side of the operation, the chosen technique for bronchial stump closure, and the utilization of epidural analgesia.

SPSS version 27 was applied and p value 0.05 was considered as significant after test of significance.

RESULTS

Overall, 150 patients were included in this study with mean age 58.46 ± 5.59 years. Majority of the patients 94 (62.7%) were less than 60 years of age. There were 103 (68.7%) males and 47 (31.3%) females. The average BMI of the patients was 26.68 ± 2.86 kg/m². There were 37 (24.7%) patients' current smokers. COPD was noted in 31 (20.7%) patients. Most of the patients i.e. 78 (52.0%) had ASA II. There were 44 (29.3%) patients had II carcinological stage. Neoadjuvant therapy was given to 14 (9.3%) patients. Right and left pneumonectomy was noted as 100 (66.7%) and 50 (33.3%), respectively. Bronchial stump coverage was

observed in 42 (28.0%) patients. Further, Epidural analgesia was given to 69 (46.0%) patients. (Table. 1). Minor complications were observed in 125 (83.3%) patients. The most common minor complication in the patients was atrial dysrhythmia, noted in 68 (53.6%) patients. Major complications were observed in 85 (56.7%) patients. The most common major complication was pneumonia and noted in 44 (51.8%) patients. (Table. 2). BMI was the effect modifier for the major complications, (p<0.050). (Table. 3).

Table	No.	1:	Demographic	and	baseline
characteristics of the study patients					

Variable	Presence
Age (years)	58.46±5.59
<60	94 (62.7)
≥60	56 (37.3)
Sex	
Male	103 (68.7)
Female	47 (31.3)
BMI (kg/m^2)	26.68±2.86
<25	45 (30.0)
≥25	105 (70.0)
Smoking status	37 (24.7)
COPD	31 (20.7)
ASA	
Ι	35 (23.3)
П	78 (52.0)
III	37 (24.7)
CAD	28 (18.7)
Carcinological staging	
Ι	50 (33.3)
II	44 (29.3)
IIIA	31 (20.7)
IIIB	25 (16.7)
Neoadjuvant therapy	14 (9.3)
Pneumonectomy	
Right	100 (66.7)
Left	50 (33.3)
Bronchial stump coverage	42 (28.0)
Epidural analgesia	69 (46.0)
N (%), Mean±S.D	

Table No. 2: Minor and major complications inthewhole study patients

Variable	Presence
Minor complication	125 (83.3)
Atrial dysrhythmia	68 (53.6)
Bronchoscopy for secretions	34 (27.2)
Vocal cord paralysis	24 (19.2)
Major complications	85 (56.7)
Reintubation	6 (7.1)
Reoperation for bleeding	7 (8.2)
Bronchopleural fistula	12 (14.1)
Empyema	3 (3.5)
Pneumonia	44 (51.8)
Pulmonary oedema /ARDS	5 (5.9)

Pulmonary emboli	5 (5.9)
Myocardial infarction	3 (3.5)
N (%)	

 Table No. 3: Association of major complication with

 demographic and baseline variables of the patients

Variable	Major complication		p-	
	Yes	No	value	
	85 (56.7%)	65 (43.3%)		
Age (years)				
<60	51 (60.0)	43 (66.2)	0.440	
≥60	34 (40.0)	22 (33.8)		
Sex				
Male	60 (70.6)	43 (66.2)	0.562	
Female	25 (29.4)	22 (33.8)		
BMI				
$<25 \text{ kg/m}^2$	31 (36.5)	14 (21.5)	0.038	
$\geq 25 \text{ kg/m}^2$	54 (63.5)	51 (78.5)		
Smoking status				
Yes	24 (28.2)	13 (20.0)	0.246	
No	61 (71.8)	52 (80.0)		
COPD	, , ,	, , , , , , , , , , , , , , , , , , ,		
Yes	18 (21.2)	13 (20.0)	0.860	
No	67 (78.8)	52 (80.0)		
ASA	• • •			
Ι	23 (27.1)	12 (18.5)	0.427	
II	41 (48.2)	37 (56.9)		
III	21 (24.7)	16 (24.6)		
CAD				
Yes	19 (22.4)	9 (13.8)	0.185	
No	66 (77.6)	56 (86.2)		
Carcinological sta				
Ι	30 (35.3)	20 (30.8)	0.719	
II	24 (28.2)	20 (30.8)		
IIIA	19 (22.4)	12 (18.5)		
IIIB	12 (14.)	13 (20.0)		
Neoadjuvant thera	ру			
Yes	8 (9.4)	6 (9.2)	0.970	
No	77 (90.6)	59 (90.8)		
Pneumonectomy				
Right	53 (62.4)	47 (72.3)	0.200	
Left	32 (37.6)	18 (27.7)		
	Bronchial stump coverage			
Yes	25 (29.4)	17 (26.2)	0.660	
No	60 (70.6)	48 (73.8)		
Epidural analgesia				
Yes	37 (43.5)	32 (49.2)	0.488	
No	48 (56.5)	33 (508)		

DISCUSSION

In this study average BMI of the patients was 26.68 ± 2.86 kg/m². There were 24.7% patients' current smokers. COPD was noted in 20.7% patients. Most of the patients i.e. 52.0% had ASA II. There were 29.3% patients had II carcinological stage. In previous studies

conducted by Alloubiet al¹¹ and Algar et al¹², it was reported that underlying pulmonary disease, particularly COPD, has been advocated as a major risk factor for postoperative complications.

Previous study conducted by Bernard et al¹⁴ reported rate of respiratory insufficiency ranging from 3.3% to 21.8%, with post-pneumonia rates falling between 3.3% and 17.4%. Chest physiotherapy is strongly advocated to mitigate atelectasis and prevent secondary infections. Given the grave risk of pneumonia postpneumonectomy, meticulous preoperative assessment, emphasis on preserving functional residual volume through pre- and postoperative physiotherapy, effective pain management, and prompt mobilization are imperative for improved patient outcomes.

In this study coronary artery disease was found in 18.7% of patients and its part of major complication in 22.4% of patients and emphysema in 3.5% of patients. Weinmann et al¹⁴ reported that myocardial ischemia or infarction was directly attributed to operative death in two patients with pre-existing coronary artery disease (CAD). We advocate for the implementation of a stringent selective screening process to identify patients necessitating heightened preoperative care, including myocardial revascularization if feasible, prior to surgery.Empyema was observed in 2.4% of our patients, while the occurrence rate ranged from 2% to 16% according to existing literature¹⁵.

Vocal cord paralysis and arrhythmias were found 19.2% and 53% in this study. In a study Alloubi et al^{12} recurrent laryngeal nerve damage is the second most complication pneumonectomy. common after Treatment involves assessing the extent and permanence of the injury. Fiberoptic study helps in precise evaluation of laryngeal function. Prevention, through techniques like the "no-touch" approach and avoiding excessive coagulation during surgery, is emphasized. In previous study conducted by Vaporciyan et al¹⁶ reported arrhythmia is the most common complication after thoracic surgery, especially following pneumonectomy. Its incidence ranges from 11 to 47%, with supraventricular arrhythmias, such as atrial fibrillation, being most common. These arrhythmias typically occur within the first 72 hours post-surgery.

In this study pulmonary edema and pulmonary emboli was observed in 5.9% of patients. Işik et al¹⁷ found higher risk of pulmonary artery thrombus with transfixation ligature than continuous suture closure due to intimal damage. Prevention outweighs treatment in all diseases. Nagahiroet al¹⁸ strongly advocate intermittent pneumatic compression. Anticoagulant therapy raises concern of increased bleeding and epidural hematoma risk. Pneumonectomy poses higher risks compared to other lung surgeries. Sleeve resections should be considered first. A multidisciplinary team must assess the necessity of pneumonectomy and be vigilant for potential complications. Preoperative evaluation and postoperative monitoring are important for early complication detection and treatment.

Author's Contribution:

Concept & Design of Study:	Muhammad Imran
Drafting:	Nasir Ali, Zeeshan Ehsan
Data Analysis:	Jamil ur Rehman, Jawad
	Hameed, Muhammad
	Sheharyar Ashraf
Revisiting Critically:	Muhammad Imran, Nasir
	Ali
Final Approval of version:	Muhammad Imran

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.202/LRH/MTI dated 21.11.2022

REFERENCES

- 1. Sengupta S. Post-operative pulmonary complications after thoracotomy. Ind J Anaesth 2015;59(9):618.
- Nitsche LJ, Jordan S, Demmy T, Dexter E, Hennon M, Nwogu C, et al. Analyzing the impact of minimally invasive surgical approaches on postoperative outcomes of pneumonectomy and sleeve lobectomy patients. J Thoracic Dis 2023;15(5):2497.
- 3. Thorpe A, Rodrigues J, Kavanagh J, Batchelor T, Lyen S. Postoperative complications of pulmonary resection. Clin Radiol 2020;75(11):876-e1.
- Wali A, Billè A. Complications of thoracic surgery: post-pneumonectomy bronchopleural fistula. Shanghai Chest 2021;5(3):1-9.
- Mazzella A, Iacono GL, Alifano M. Postpneumonectomy respiratory failure and acute respiratory distress syndrome: Risk factors and outcome. Shanghai Chest 2021;5(8):2-5.
- 6. Xu X, Cheung DS, Smith R, Lai AY, Lin CC. The effectiveness of pre-and post-operative rehabilitation for lung cancer: A systematic review and meta-analysis on postoperative pulmonary complications and length of hospital stay. Clin Rehab 2022;36(2):172-89.
- 7. Minervini F, Kocher GJ, Bertoglio P, Kestenholz PB, Muñoz CG, Patrini D et al. Pneumonectomy

for lung cancer in the elderly: lessons learned from a multicenter study. J Thorac Dis 2021;13(10):5835.

- Comacchio GM, Mammana M, Cannone G, Zambello G, Silvestrin S, Rebusso A, et al. Impact of a standardized protocol for chest tube management after VATS pulmonary resections on post-operative outcomes and complications. Updates in Surg 2023;26:1-8.
- Skrzypczak PJ, Kasprzyk M, Piwkowski C. The review of the management and prevention methods of bronchopleural fistula in thoracic surgery. J Thorac Dis 2023;15(10):5268.
- 10. Zulfa PO, Habibie YA. Pneumonectomy for severe post-tuberculosis bronchiectasis: A successful of case report and review of the long-term outcome. Narra J 2023;3(3):e222.
- 11. Alloubi I, Jougon J,Delcambre F. Early complications after pneumonectomy: retrospective study of 168 patients. Interact Cardiovasc Thorac Surg 2010;11:162-5.
- 12. Algar FJ, Alvarez A, Salvatierra A, Baamonde C, Aranda JL, Lo'pez-Pujol FJ. Predicting pulmonary complications after pneumonectomy for lung cancer. Eur J Cardiothorac Surg 2003;23:201–208.
- Bernard A, Deschamps C, Allen MS, Miller DL, Trastek VF, Jenkins GD, et al. Pneumonectomy for malignant disease: factors affecting early morbidity and mortality. J Thorac Cardiovasc Surg 2001;121:1076–82.
- 14. Weinmann M, Jeremic B, Toomes H, Friedel G, Bamberg M. Treatment of lung cancer in the elderly. Part I: non-small cell lung cancer. Lung Cancer 2003;39:233–253.
- Kawaguchi T, Tojo T, Kushibe K, Kimura M, Nagata Y, Taniguchi S. Shortand long-term outcomes after pneumonectomy for primary lung cancer. Ann Thorac Cardiovasc Surg 2008;14: 289–293.
- Vaporciyan AA, Correa AM, Rice DC. Risk factors associated with atrial fibrillation after noncardiac thoracic surgery: analysis of 2588 patients. J Thorac Cardiovasc Surg 2004;127:779-86.
- Işik F, Kara M, Tunçögür B. Significance of ligature technique on the formation of pulmonary artery stump thrombosis in a canine model. Acta Chir Belg 2005;105:203-6.
- Nagahiro I, Andou A, Aoe M. Intermittent pneumatic compression is effective in preventing symptomatic pulmonary embolism after thoracic surgery. Surg Today 2004;34:6-10.